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Evolving viscoplastic flows upon slopes are an important idealization of many flows
in a variety of geophysical situations where yield stress is thought to play a role. For
such models, asymptotic expansions suitable for slowly moving shallow fluid layers
(lubrication theory) reduce the governing equations to a simpler problem in terms of
the fluid thickness. We consider the version of the theory for fluids described by the
Herschel–Bulkley constitutive law, and provide a variety of solutions to the reduced
equation, both numerical and analytical. For extruded inclined domes, we derive the
characteristic temporal behaviour of measures of the dome’s dimensions.

1. Introduction
A key ingredient in many geophysical problems is the spreading of a layer of fluid

under the combined action of gravity and internal stresses. Examples include the
downhill flow of lava (Griffiths 2000), the movement of ice masses (Hutter 1983), and
the release and slide of mud piles (Liu & Mei 1989). Several researchers have modelled
such spreading dynamics by treating the fluid as a shallow Newtonian fluid (Huppert
1982; Lister 1992). However, many geological materials are distinctly non-Newtonian
in character: ice is commonly assumed to flow like a power-law fluid (Hutter 1983),
and lava and muds are often modelled (both theoretically and in the laboratory)
as shear-thinning viscoplastic fluids (Griffiths 2000; Coussot 1997). Avalanches and
debris flows are sometimes modelled as viscoplastic fluids (e.g. Whipple 1997), though
with some skepticism on the physical suitability.

Problems involving spreading fluids also arise in a variety of chemical engineering
contexts, where non-Newtonian rheology is typically the standard, rather than the
exception. Here, many industrial processes involve the flow of specially designed fluids
in thin layers with the frequent aim of preparing uniform coatings. In fact, the shape
adopted by viscoplastic fluids flowing on horizontal or inclined planes has even been
suggested as a means to measure rheology (DeKee et al. 1990; Coussot, Proust &
Ancey 1996).

Of course, there are many complicating factors in both the geophysical and engin-
eering applications. For example, the thermal structure of lava and ice is an impor-
tant factor in the flow problem, primarily because slight temperature variations can
generate relatively large changes in rheology. We ignore all such complicating factors
in this study, and give a general discussion of the flow of an isothermal viscoplastic
fluid on an inclined surface. The only approximations we make are that the fluid layer
is thin and slowly moving, which allows us to take advantage of a lubrication-style
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Figure 1. Sketch of a flow on an inclined plane. φ is the angle of inclination to the horizontal, z is
perpendicular to the plane, x is directed downslope, and y is the cross-slope coordinate.

asymptotic reduction of the governing fluid equations. This reduction scheme is stan-
dard in many fields for Newtonian fluids; here we adopt the version of this theory
for a viscoplastic fluid based on the Herschel–Bulkley model (a non-Newtonian fluid
model that incorporates both a yield stress and shear thinning or thickening). Our
aim is provide a detailed exploration of this relatively unstudied problem, and to lay
a foundation for future discussions of the particular applications in geophysics and
engineering. Previous results are confined to a limited selection of solutions for static
domes (Coussot et al. 1996; Osmond & Griffiths 2001), steady three-dimensional
flows (Coussot & Proust 1996), and two-dimensional sheet flows (Liu & Mei 1989;
Huang & Garcia 1998). Most recently, Mei & Yuhi (2001) have presented a solution
describing a dam-break problem for viscoplastic flow in a channel.

2. The reduced model
We consider the configuration shown in figure 1, described by a Cartesian coordinate

system (x, y, z); x is the downstream coordinate, y denotes the cross-stream coordi-
nate and z = 0 locates the inclined plane. The angle of inclination of the plane to the
horizontal is φ. The thickness of the fluid is h(x, y, t) and (u, v) denotes the velocity
field. There are three typical scenarios for the emplacement of the fluid: (i) the fluid
is extruded onto the plane through a vent (Hulme 1974; Osmond & Griffiths 2001);
(ii) the fluid is fed onto the plane from an upstream reservoir (Coussot & Proust
1996); (iii) a fixed volume of fluid is allowed to slump to equilibrium.

We describe the fluid by the Herschel–Bulkley constitutive law (e.g. Tanner 1985).
In this non-Newtonian model, the components of the stresses, τij , are related to the
strain rates, defined in terms of γ̇ij ≡ ∂ui/∂xj + ∂uj/∂xi, through the relations

τij =

(
Kγ̇n−1 +

τp

γ̇

)
γ̇ij for τ > τp (2.1)

and

γ̇ij = 0 for τ < τp, (2.2)

where τp is the yield stress, K is the ‘consistency’, n is a power-law parameter, and the
second invariants are

τ =
√
τijτij/2, γ̇ =

√
γ̇ij γ̇ij/2. (2.3)
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With the constitutive law in hand, the next step is to specify the momentum and
continuity equations for the fluid, and the boundary conditions on the base (no-slip)
and surface (stress-free). From there, we pick a suitable non-dimensionalization of
the equations in order to isolate a small parameter (namely ε = H/L, the ratio of
characteristic thickness, H , to characteristic scale, L, in x and y) and determine the
largest terms in each equation. The leading-order balances can then be manipulated
into the required thin-layer equations. We do not give the details here, and refer the
reader to Balmforth & Craster (1999) and Mei & Yuhi (2001). We quote only the
final reduced model:

ht +Ux +Vy = ws,

(U
V
)

=
nY (sY )1/n[(1 + 2n)h− nY ]

s(n+ 1)(2n+ 1)

(
S − hx
−hy

)
, (2.4)

with

Y (x, y, t) = Max

(
h− B

s
, 0

)
and s =

√
(S − hx)2 + h2

y, (2.5)

where ws denotes the extrusion speed above any vents in the plane, S = (L/H) tanφ
is a measure of the slope relative to the fluid’s typical aspect ratio (assumed to be
order one, so that the slope must be sufficiently gentle), and

B =
τp

ερgH cosφ
(2.6)

is the ‘Bingham number’, a dimensionless measure of the yield stress (ρ is density and
g is gravity). Additionally (U,V) is the depth-integrated velocity field, and s is the
slope of the fluid surface.

We solve the equations on the domain xu 6 x 6 xd and yl 6 y 6 yr . Unless other-
wise stated, the boundary condition is that the gradient of h(x, y, t) normal to the
edge must vanish. The limits, xl , xu, yl and yr are chosen sufficiently large that
the boundaries do not impede the flow. The initial conditions are designed for the
particular kind of flow problem (that is, the scenarios (i)–(iii) described above), and
will be given below. If the fluid occupies a compact area, the global integral of the
evolution equation provides the mass conservation law,

d

dt

∫ xd

xu

∫ yr

yl

h(x, y, t) dx dy =

∫ xd

xu

∫ yr

yl

ws(x, y, t) dx dy ≡ Q, (2.7)

where Q is the total mass flux of any sources (assumed constant in this study).
The yield criterion appears within the evolution equation through the function Y .

There is a subtlety hidden in these equations associated with this function (Balmforth
& Craster 1999): because the surface is assumed to be stress-free, provided the fluid
is flowing over the plane, there is a surface z = Y (x, y, t) above which τ must fall
below τp. For z > Y , the theory appears to predict that the fluid is unyielded – a
rigid plug flow – and so z = Y is a yield surface. This prediction is incompatible with
the fact that the fluid is spreading over the plane (that is, that there is divergence or
convergence of the flow). Hidden at higher order is the resolution of this contradiction:
above z = Y , the stresses are not actually below the yield value, but order ε above it.
In other words, the level z = Y (x, y, t) is really a ‘fake’ yield surface, and the upper
region is a ‘pseudo-plug’ (to use the terminology of Walton & Bittleston 1991).

Most previous expositions have considered one-dimensional versions of the model
(2.4), obtained by considering either axisymmetrical extrusions on flat plates
(Balmforth et al. 2000), or sheet flows without dependence on y (Liu & Mei 1989). The
Newtonian limit of the theory (n = 1 and B = 0) was considered by Huppert (1982)
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and Lister (1992). Steady solutions, with the further approximation that S − hx ≈ S ,
were given by Coussot & Proust (1996).

Except in some special limits, we cannot solve the reduced model in closed form
and we fall back on numerical computations. We use an adaptive scheme (Blom,
Trompert & Verwer 1996), designed to deal with sharp fronts; the accuracy of
the code is verified by comparisons amongst runs with different resolutions and
with one-dimensional solutions for expanding axisymmetrical domes (Balmforth
et al. 2000). Two other points deserve mention. First, in the computations, it is
necessary to smooth out the function Y ; we adopt a regularization in the spirit of
Appendix A of Balmforth et al. (2000). This particular regularization has little appar-
ent effect. Second, in order to make the code run efficiently, it was necessary to add a
small linear diffusion term, κ(hxx + hyy), to the right of the evolution equation
and ‘pre-wet’ the plane – that is, we choose initial fluid distributions of the form,
h(x, y, 0) = hI (x, y)+hs, where hI (x, y) denotes any substantial localized initial volume,
and hs = 10−3 or smaller. The linear diffusivity κ was selected to be as small as pos-
sible to minimize any associated diffusion whilst maximizing the operating efficiency
of the code (typical values were 10−4). Based on grid refinement and variation of κ,
we believe that the dynamics is largely unaffected by the linear diffusion, although
the steep edges of the computed domes (the sharp contact between the dome and
the pre-wetted region) are discernibly smoothed. One unappealing aspect of the com-
putations is that the scheme is unable to access reliably the large-time solutions in
which the yield surface becomes very low. However, this limit can be explored with
the analytical theory described in § 4.

Thus formulated, the model has the parameters B and S , together with any others
that describe the source ws, and the initial or inflow profiles (see below). However,
the characteristic lengthscales H and L are not prescribed at this stage, and so we
have the freedom to select these scales to remove two of the parameters of the
problem. We choose S = 1 (unless the plane is horizontal, in which case an alternative
scaling is needed) and fix either the incoming flux of material or the initial thickness.
This leaves the Bingham number B and power-law exponent n as free parameters,
together with any others determining the shape of any sources or initial profiles.
However, we refrain from everywhere setting S = 1 formally so that we have the
option of considering horizontal planes. Most prior studies concentrate upon the
Bingham model with n = 1; for the purposes of illustration we use this value in all
computations.

3. Numerical solutions
3.1. Extrusions

To follow lava-like extrusions from vents onto inclined planes, we take hI (x, y) = 0
and specify the source function,

ws = ws(r) =
1

r2∗

(
1− r2

r2∗

)2

θ(r∗ − r), (3.1)

where r is the radial coordinate (with the origin located at the centre of the vent), θ(r)
is the Heaviside step function, and r∗ represents the vent radius. (This form ensures
that the source flux is constant in time and independent of r∗.) We shall be mainly
interested in flows for which the fluid extent is far larger than the vent, r∗ � 1, which
means that B (and n if it were used) are the most significant parameters for our
extrusions, in line with the experiments performed by Osmond & Griffiths (2001).
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Figure 2. An extruded, slumped dome on an inclined plane, computed numerically using the
thin-layer model with B = 1.33. (a–c) Three snapshots of the domes at times 1.88, 5.64 and
9.4, respectively. Directly below, (d–f ), are the corresponding height profiles (solid lines) and
yield surfaces (dotted lines) along the midsection (y = 0). (g) The evolution of the cross-stream
half-thickness (Ys), the downslope and upslope lengths (Xmax and Xmin), and the maximum height
(hm). (h) A sequence of curves showing the dome’s edge (the curves show the edge every 0.38 time
units), and (i ) vectors indicating the depth-averaged velocity field, h−1(U,V), at t = 9.4 (the dotted
curves are contours of constant height).

3.1.1. Dome shapes

We illustrate the evolution of an extrusion onto a sloping plane in figure 2.
The dome has B = 1.33 and n = 1 (with r∗ = 0.05 for the vent radius); as mentioned
above, we always take S = 1 unless the plane is flat. Three snapshots of the dome
are shown. The midsection profiles of the dome, together with the corresponding
yield surface, Y (x, y = 0, t), illustrate how this dome has a pseudo-plug and a yielding
region of roughly equal volume. Also displayed are some characteristic measures
of the dome’s size and shape: the maximal height, hm(t), the half-width, Ys(t), and
the maximum lengths upstream and downstream of the vent, Xmin(t) and Xmax(t),
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Figure 3. A dome with B = 0.067. (a) A snapshot of the dome at t = 9.4. (b) Five snapshots of
the midsection profile (solid lines) and corresponding yield surface (dotted lines) at times 1.88, 3.76,
5.64, 7.52 and 9.4. (c) A sequence of curves showing the dome’s edge (the curves show the edge
every 0.38 time units), and (d ) vectors of the depth-averaged velocity field at the final time (with
superposed contours of constant height).

respectively. The lengths all diverge from one another after a short time, revealing the
influence of the background slope. The effect of the downslope slumping is illustrated
further by a succession of images of the dome edge, and by the vectors of the
depth-averaged velocity field, h−1(U,V), at the final time.

For comparison, we show domes with B = 0.067 and B = 26.6 in figures 3 and 4.
The first dome is almost Newtonian, whereas the second is dominated by its yield
stress (as illustrated by the pseudo-plug which occupies almost the whole dome and
Y � h). After an initial period, the nearly Newtonian dome spreads mainly downhill
and the upper section of the dome is close to stationary with an almost flat surface
(hx ≈ S = 1). The dome with larger-B is most symmetric, an obvious consequence of
the greater yield strength, and compares well with the results predicted by the large-B
theory described in § 4.

3.1.2. Similarity solutions and dome scalings

For point sources, we can look for similarity solutions that directly uncover how
the global dome characteristics (hm, Xmax, Xmin and Ys) vary with time. Let

x = tγξ, y = tδη, h(x, t) = t1−γ−δϕ(ξ, η), (3.2)

which ensures that the mass conservation law becomes

Q =

∫ ∞
−∞

∫ ∞
−∞
ϕ(ξ, η) dξ dη (3.3)

(for constant mass influx). The evolution equation can then be written in the form

ϕ− γ(ξϕ)ξ − δ(ηϕ)η + υξ + νη = 0, (3.4)
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Figure 4. A similar picture to figure 3, but for a dome with B = 26.6. The additional picture (e)
shows the height (divided by four, for clarity) and the characteristic lengths. The points show the
numerical computations and the solid lines indicate the analogous results for the large-B theory of
§ 4. The dotted lines show the characteristic scalings, t1/5 and t2/5.

where (
υ

ν

)
= −nΥ

1+1/nς1/n−1[ϕ(2n+ 1)− nΥ ]

(n+ 1)(2n+ 1)

(
ϕξ − t2γ+δ−1S
t2γ−2δϕη

)
tα, (3.5)

Υ = ϕ− B

ς
t3γ+2δ−2, ς =

√
(ϕξ − t2γ+δ−1S)2 + t2γ−2δϕ2

η (3.6)

and α = [2(n+ 1)− (n+ 2)δ − (2n+ 3)γ]/n.
The extrusion of the dome begins at t = 0. We look for a nearby small-time

similarity solution by balancing the time derivative (which generates the first three
terms on the left of (3.4)) with the largest terms from the fluxes, υξ +νη , when t−1 � 1.
This fixes α = 0 (or γ = 2(n+ 1)/(3n+ 5)) and δ = γ. Furthermore,(

υ
ν

)
→ −nϕ

2+1/nς1/n−1

(2n+ 1)

(
ϕξ
ϕη

)
and ς→

√
ϕ2
ξ + ϕ2

η. (3.7)

The equations can then be solved on transforming to polar coordinates, whereupon
one recognizes the solution as that for an axisymmetrical power-law fluid on a
horizontal plane (Balmforth et al. 2000).

As time increases, the terms omitted in arriving at (3.7) grow and eventually cannot
be neglected, indicating that there must be a transition in the dome scalings. The
slope-dependent terms of (3.4)–(3.6) become important for t order one. If these terms
are the first to appear, then we expect a transition to a slope-dominated state (as
in Lister 1992). However, the term stemming from the yield stress in Υ can also
become important for times t ∼ B1/(2−3γ−2δ) ≡ B−(5+3n)/4n. If these terms are the first
to appear, we expect a transition to a yield-stress-dominated state. Hence, if B � 1,
there is a slope-induced transition, whereas for B � 1, the yield stress first becomes
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Downslope Upslope Half-width, Maximal
length, Xmax length, Xmin Ys height, hm

Similarity solution, B � 1, n 6= 1
Early 2(n+ 1)/(3n+ 5) 2(n+ 1)/(3n+ 5) 2(n+ 1)/(3n+ 5) (1− n)/(3n+ 5)
Late (5n+ 2)/[3(2n+ 1)] −n/[3(2n+ 1)] 1/3 −n/[3(2n+ 1)]

Similarity solution, B � 1, n = 1
Early 1/2 1/2 1/2 0
Late 7/9 −1/9 1/3 −1/9

Yield-stress-dominated dome
Early 2/5 2/5 2/5 1/5
Late 1 0 0 0

Table 1. The temporal power-law scalings expected from the similarity solutions for the downslope
length, Xmax, the upslope length, Xmin, the half-width, Ys, and the maximal height, hm. Also included
are the scalings expected from the theory of § 4.1.

important. Yield-stress-dominated domes are considered in § 4.1, so we entertain the
first possibility here – a transition due to slope.

We rewrite (3.5)–(3.6):(
υ

ν

)
=
nΥ 1+1/nς̃1/n−1[ϕ(2n+ 1)− nΥ ]

(n+ 1)(2n+ 1)

(
S − t1−2γ−δϕξ
−t1−3δϕη

)
tβ, (3.8)

Υ = ϕ− B

ς̃
tγ+δ−1, ς̃ =

√
(S − t1−2γ−δϕξ)2 + t2−2γ−4δϕ2

η (3.9)

and β = [(2n+1)(1−γ)− (n+1)δ]/n. Now we look for a solution with β = 0, δ = 1/3
and γ = (5n+ 2)/3(2n+ 1). In this case,(

υ

ν

)
→ nΥ 1+1/nS1/n−1[ϕ(2n+ 1)− nΥ ]

(n+ 1)(2n+ 1)

(
S

−ϕη
)

and ς̃→ S. (3.10)

Provided that the yield-stress term remains negligible, we must then solve the equation,

ϕ− γ(ξϕ)ξ − 1
3
(ηϕ)η +

nS1/n

2n+ 1
(ϕ2+1/n)ξ − nS1/n−1

2n+ 1
(ϕ2+1/nϕη)η = 0, (3.11)

to specify fully the solution. Note that the scalings predict a spreading flow whose
thickness declines with time (h ∼ t−n/3(2n+1)ϕ). This solution can only describe the
downslope portion of the slumping dome. Upslope of the vent, the axisymmetrical
expansion subsides leaving an almost stagnant pool of fluid with a flat surface (Lister
1992). Thus the upper edge of the dome comes to rest (cf. figure 3), and then recedes
to keep the surface flat once the thickness begins its decline.

Equation (3.11) is still not the end of the story because, even when the slope
dominates, the yield-stress term is not subdominant: Btδ+γ−1 → Btn/3(2n+1). In other
words, yield stresses always grow to induce another transition to a yield-stress-
dominated state. That transition occurs for t ∼ B−3(2n+1)/n. We summarize the results
in table 1, which lists the scalings that are predicted for the maximal height, hm, and the
characteristic dome lengths, Xmin, Xmax and Ys. The results for yield-stress-dominated
domes are derived in § 4.1.
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is determined by the advance of the dome’s edges (that is, by approximating Xmin, Xmax and Ys by
linear functions of time, and using the corresponding speeds to advance the upper, lower and lateral
boundaries of the domain). The vent is fixed in the computational space, and so corresponds to an
expanding vent in physical space; the expansion of the vent keeps the ratio of the source radius to
dome edge roughly constant, and avoids any gradual loss of resolution at long times. For t < 10−2

the linear rise of hm(t) reflects the initial emplacement of the fluid.

We compare the scaling predictions for smaller B with numerical results in figure 5.
This illustrates how the axisymmetrical short-time scalings (Xmin ∼ Xmax ∼ Ys ∼ t1/2)
change due to the effect of the background slope for times of order unity. Thereafter,
the more Newtonian domes pass to the long-time scaling predicted above, in which
Xmax ∼ t7/9 and Ys ∼ t1/3. A slight disagreement between the computations and the
similarity analysis is that the upslope length, Xmin, slows to rest and then begins to
subside back down the slope for B = 0, but never reaches the t−1/9 scaling. Also, the
maximal height varies differently with time. The domes with larger B show increasing
deviations from the Newtonian scalings, mainly for times larger than unity, illustrating
the emergence of yield stresses. Particularly noticeable is the lack of subsidence in the
upslope length Xmin – the upper regions of the fluid become stationary and held at
the yield stress, rather than slowly slump downhill.

3.2. Rivulets

To model flows fed by an upstream reservoir, we take ws = 0 and modify the boundary
condition along the upper edge of the plane, x = xu = 0. Here, we assume that the
reservoir feeds the flow through an aperture of a given shape. We take the smooth
function h(0, y, t) = hu(y) = exp[−(y/y∗)2], where y∗ is the characteristic half-width.
The Gaussian shape is convenient, but not significant – one could use a function
more closely resembling an experimental set-up, if desired. We start the computation
with the initial condition hI (x, y) = hu(r) (r2 = x2 + y2).
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A developing rivulet is shown in figure 6. The fluid initially flows out both down
and across the plane, creating a structure that is much wider than the aperture. The
cross-slope flow subsequently slows and a tongue of downhill moving fluid is created.
The lateral portions of the flow near the aperture become almost stationary (as
indicated by the relatively low yield surface and the vectors of the depth-integrated
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horizontal line, B = Shmax ≡ 1, marks the limit below which rivulets expand inexorably into flowing
streams. The two lines, B = Bm(y∗) and B = 1, divide the parameter plane into three characteristic
regimes (no motion, transient flows, developing streams). The curve Bc(y∗) is the boundary below
which the characteristics solution of § 4.2 is not valid. The stars locate the parameter settings used
in the computations.

velocity field at the end of the computation), forming what one might refer to as
‘levees’. However, the levees are not completely stationary and the flow does not
evolve to constant width (as assumed by Hulme 1974), but continues to widen with
time and distance downstream. This is what one expects from a consideration of the
possible steady flow profiles (Coussot & Proust 1996). The overall shape of the flow
is similar to the experimental results presented by Coussot & Proust (1996).

An important feature of the rivulets formed in this way is that they are not
constant-mass-flux extrusions. In fact, because the thickness is prescribed on the
boundary but the surface gradient is free to evolve, the mass flux varies with time.
Indeed, if B is sufficiently large, the initial state can be supported by the yield stress
without moving at all (so the mass flux remains zero). Conversely, when B is small,
the yield stress is never large enough to support the fluid at the aperture itself, and
so material always flows into the domain to seed a stream. Between these two limits,
the fluid at the aperture can be below the yield stress, and initially stationary, but
downslope the yield stress exceeded. The fluid then flows initially, but slumps to rest
when surface gradients decline and the associated stresses fall beneath the yield value.
In this circumstance, there can be a transient mass flux.

To predict the evolution of a particular configuration, we first estimate the di-
mensionless maximal stress exerted by gravity on the initial configuration (equivalent
to the maximum value of sh over the domain), denoted Bm(y∗). If B > Bm(y∗), the
yield stress is not exceeded, and the fluid is held in position. On the other hand, the
gravitational stress is smallest, and equals unity, at x = y = 0. Thence, the fluid must
flow at the aperture if B < 1. We therefore predict stationary states for B > Bm(y∗),
and flows that inexorably expand into streams for B < 1. The intermediate cases, with
1 < B < Bm(y∗), can flow initially, but brake to a halt. Figure 7 sketches out the three
regimes.

The example shown in figure 6 corresponds to a flow that continues to expand into
a stream. A second example, with B = 1.1 and y∗ = 0.66, is shown in figure 8. This
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flow slumps initially but subsequently decelerates to rest (illustrating the intermediate
case). The evolving structure in this picture contains portions over which the yield
stress is never exceeded, and therefore never flow. The remainder of the fluid slumps
downslope and approaches a stationary state that can be computed by the methods
of § 4.2. The approach of the midsection to the expected final stationary profile is also
illustrated in the figure; the expected profile is given implicitly by

Sx = h− 1− B

S
log

(
B − S
B − Sh

)
. (3.12)

A collection of computations (corresponding to the stars in figure 7) showing how
downstream length varies with time is displayed in figure 9; this picture illustrates
the deceleration of runs with B > 1.1 (intermediate cases), and the continued flow of
those with B < 1 (forming streams).

3.3. Slumps

To simulate the release of a finite volume of fluid, we take ws = 0 and prepare
the fluid with the initial profile hI (x, y) = exp[−(x/x∗)6 − (y/y∗)6]; this is a conve-
nient illustrative profile, being both smooth and having adjustable parameters, x∗ and
y∗, through which we can vary the volume and shape. Slumps with B = 0.5 and n = 1
are illustrated in figure 10; the two cases have initial profiles with (x∗, y∗) = (3/4, 1/4)
and (x∗, y∗) = (1/2, 1/2). The domes slump primarily downslope, together with a
slight uphill slump, and yield almost everywhere. Eventually, the fluid nearly comes
to rest with a structure held almost exactly at the yield stress: Y = h− B/s ≈ 0. The
expected final stationary state can again be constructed using theory described in
§ 4.2. Of course, the presence of linear diffusion in the numerical scheme means that
the slumps never truly come to rest in the computations, but always are subject
to a residual spreading. This is particularly evident near the edges of the slumped
domes in the figure (residual spreading at the front is also obvious in figure 8 for a
decelerating rivulet).

Even though the initial volumes of the two numerical experiments are roughly the
same, the slumped domes are quite different. This is because the final state contains
a ridge along which the surface gradient is almost discontinuous, and is not a dome
with a single pinnacle. The ridges are held at the yield stress and have varying
lengths depending on the initial profile. The ridge roughly divides the part of the fluid
that slumped upslope from the part that slumped downslope. This feature implies
a pronounced dependence on the initial profile which must be removed in order to
measure the rheology in any slump test.

4. Yield-stress-dominated domes and slumped deposits
When B � 1, extruded domes become dominated by the yield stress. In this

situation, the pseudo-plug occupies most of the dome and Y � 1 (see figure 4). The
condition Y = 0 also characterizes the final shape of fluids that slump to rest from an
initial configuration (or at least the part that yielded during the motion), regardless
of the value of B. These considerations can be turned into a common analytical
theory for the corresponding shapes adopted by the fluid.

From equation (2.5), a vanishing yield surface implies

(S − hx)2 + h2
y = B2/h2, (4.1)

which determines h. For slumped deposits, the equality (4.1) is exact and finding
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Figure 9. The progression of the downslope length, Xmax, with time for several rivulets with
varying B and y∗. The dots display the expected limiting value for B = 1.1, which is given by
SXmax = (B/S) log[B/(B − S)]− 1 ≈ 1.64 (with S = 1).

its solution ends the story. (In fact, the theory for slumped, stationary structures is
very general, applying to any yield-stress fluid whether or not it is described by the
Herschel–Bulkley model.) But this equation is only an approximation for yield-stress-
dominated extrusions because a slender yielding region still exists adjacent to the
plane which allows the domes to expand slowly. In this case, (4.1) is the leading-order
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equation in an asymptotic expansion for B � 1†. The yield-stress-dominated domes
evolve quasi-statically by marching through a succession of states described by (4.1).
Later, in § 4.1, we calculate in detail the dome evolution.

Equation (4.1) can be solved using the general technique of characteristics com-
monly called Charpit’s method (Sneddon 1957). In this method, we solve the partial
differential equation (4.1) by computing its characteristic curves. Each curve is par-
ameterized by a variable τ and is constructed by setting p = hx and q = hy , and then
solving some ordinary differential equations for x, y, h, p and q that follow from
the governing partial differential equation. Here, the characteristic equations can be
written in the form,

ẋ = 2(S − p), ẏ = −2q, ḣ = 2p(S − p)− 2q2,
ṗ

p
=
q̇

q
=

2B2

h3
, (4.2)

where the dot denotes differentiation with respect to τ. With the solution to the
characteristic equations in hand, we may reconstruct the general solution for h by
eliminating τ and any constants of integration.

† The analysis can be recast in the form of a conventional asymptotic theory using the rescalings,
x = Bx̃, y = Bỹ, h = Bh̃, Y = B−2n/(n+1)Ỹ and t = B3 t̃. Because we only need the leading order, we
omit these rescalings here. Note, however, that B/h remains order one in the limit.
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Two relations follow immediately from (4.2):

p = aq, x− ay = 2Sτ, (4.3)

where the constant of integration, a, is a property of each characteristic curve, and
we have set x = y = 0 at τ = 0. Hence, τ = (x− ay)/2S . We next relate h to p using
(4.1) and then integrate dx/dh = ẋ/ḣ and dy/dh = ẏ/ḣ, to find

S(y − y0) =
√
b2 + a2b2 − h2 − b

√
1 + a2 (4.4)

and

S(x− x0) = h− b

2
log

[
∆(h)

∆(0)

]
, (4.5)

where b = B/S ,

∆(h) =

(
ab+

√
b2 + a2b2 − h2

ab−√b2 + a2b2 − h2

)(
b+ h

b− h
)

(4.6)

and (x0, y0) denotes the curve parameterizing the fluid edge. These relations provide
the solution in y > 0. Identical formulae, but with an additional minus sign on the
left of (4.4), provide the solution in y < 0, although the curve (x0, y0) is different if
the structure is not symmetrical about y = 0.

At this stage, we can build the complete solution given the locus (x0, y0) of the edge
of the fluid. Alternatively, we may try to specify the solution by fixing h along a given
curve that intersects all the characteristics. For domes extruded from a point source,
specifying the apex of the dome provides the most concise form of the solution. This
is the line we take below in order to construct the history of a yield-stress-dominated
extrusion. To compute the final stationary states of rivulets and slumps, however, we
fix h along a curve, as described further in § 4.2.

4.1. Extruded domes

On taking the apex of the dome to lie at the origin and have height h = hm, we find

Sy0 = b
√

1 + a2 −√b2 + a2b2 − h2
m (4.7)

and

Sx0 = −hm +
b

2
log

[
∆(hm)

∆(0)

]
, (4.8)

which defines the edge, (x0, y0), in terms of the dome height, hm. At this point, hm is a
parameter in the solution. For a truly stationary dome, we should take hm = 1. In a
yield-stress-dominated extrusion, however, hm evolves and this is how time enters the
large-B problem.

Several features of the slumped dome can be explicitly identified. The median of the
slumped dome (y = 0) is given by a→ ±∞, and provides the profile of the midsection,

Sx =

{
h− hm + b log[(b− h)/(b− hm)], a→∞
h− hm + b log[(b+ hm)/(b+ h)], a→ −∞, (4.9)

as in Osmond & Griffiths (2001) and Coussot et al. (1996) (this is also the same
profile as a line source – see Appendix B and Liu & Mei 1989). For a = 0, on the
other hand, we obtain

Sx = h− hm − b

2
log

[
(b− hm)(b+ h)

(b+ hm)(b− h)
]
, Sy =

√
b2 − h2 −√b2 − h2

m. (4.10)
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Figure 11. Contours of constant height (spaced by hm/10) for yield-stress-dominated domes on
sloping planes. The dotted curves show the a = 0 characteristic that connects to the widest part of
the dome (a–d ). Contours of constant height for the limiting shape as b→ hm (e).

This second curve has furthest lateral extension and allows us to identify the width of
the dome: SYs = b−√b2 − h2

m. In the limit S → 0, the characteristics become straight
radial spokes, and by setting a = cot θ, where θ is the polar angle, one deduces x = ay
and the familiar axisymmetrical result, h =

√
h2
m − 2Br (Nye 1952).

Sample solutions are shown in figure 11 (cf. Osmond & Griffiths, who solved (4.1)
numerically). As b→ hm, the domes are increasingly slumped (b ∝ S−1, so a decrease
in b corresponds to an increase of the slope). The solution given above no longer
works if b < hm, and reflects the fact that the dome is unable to support itself
against gravity. The limiting solution for b → hm develops into a channel flow with
semicircular cross-section, as illustrated in figure 11(e).

The next step in determining the history of an extrusion is to compute the dome
volume from the characteristics solution:

V =
2Bh2

m

S3

∫ 1

0

ds

s3
√

1− s2 [(3ψ2 + s2) tan−1(s/ψ)− 3ψs], (4.11)

where ψ =
√
b2/h2

m − 1. The quantity S2V/b3 is plotted as a function of hm/b in
figure 12(a). From this figure we observe that, as the volume increases during an
extrusion (V = Qt), hm/b increases from zero up to a maximum value of unity.
Thence, figure 11 can be regarded as a succession of snapshots of an evolving dome.
Using the formulae in (4.7)–(4.8) and figure 12(a), we may further determine the
time evolution of the edge of the slumped dome, and, in particular, its characteristic
lengths, Xmin, Xmax and Ys. A sample extrusion constructed in this way is shown
in figure 12(b–e) for a specific choice of B. From (4.11), we may also deduce the
limits V ∼ (1− hm/b)3/2 for hm � b, and V ∼ log(b/hm − 1) for hm → b. These, in
turn, imply that

hm ∼ t1/5, Xmin ∼ t2/5, Xmax ∼ t2/5, Ys ∼ t2/5 for hm � b (4.12)
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Given the function shown in (a), we may construct sample extrusions in the large-B limit given
specific values of S and B. This is done in the other panels of the figure for B = 10, S = 1:
(b) dome height, (c) upstream length, (d ) downstream length, (e) width. Again, the two limiting
forms of V are added in (c–e).

and

hm ∼ t0, Xmin ∼ t0, Xmax ∼ t1, Ys ∼ t0 for hm → b, (4.13)

which correspond to the small- and long-time limits of an actual extrusion. The first
limit mirrors the axisymmetrical expansion of a horizontal dome. The scalings are
reported in table 1.

The final piece of the puzzle for evolving extrusions is to locate the small but finite
yield surface and compute the depth-integrated velocity field. To accomplish this, we
must return to the height evolution equation (2.4) which, in the large-B limit and
away from any localized vents, becomes

ht +Ux +Vy = 0,

(U
V
)

= F

(
S − p
−q

)
, (4.14)

where

F =
nB1/n−1

n+ 1
Y 1+1/nh2−1/n. (4.15)

Equation (4.14), in fact, determines Y . To see this, we substitute the characteristics
solution into the equation. The time dependence of that solution enters paramet-
rically through hm(t), and, formally, we may write h = h(x, y, hm) and a = a(x, y, hm).
However, given the implicit form of the solution is it simpler to make the coordinate
transformation (x, y) → (a, h), and then write x = x(a, h, hm) and y(a, h, hm). The first
result is that (

∂h

∂t

)
x,y

=
p(a, h)

p(a, hm)
hmt. (4.16)
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Figure 13. Pattern of the depth-averaged velocity field for the domes shown in figure 11(a–d ).

Secondly, by writing U = F(S − p) and V = −pF/a, we find that

Ux +Vy = p
[
F
(
S − p− p

a2

)]
h
− F[axpa + ay(p/a)a], (4.17)

where ax = (∂a/∂x)h,t, pa = (∂p/∂a)h,t and so on. After some algebra, we eventually
find

F(a, h, hm) =
ahhmt

Sp(a, hm)[Γ(a, h)− Γ(a, hm)]

[
Γ(a, hm) sin−1

(
h

b
√

1 + a2

)
− h
]
, (4.18)

where Γ(a, h) =
√
b2 + a2b2 − h2. Finally, we compute the yield surface and the depth-

averaged velocity field:

Y =

[
n+ 1

n
B(n−1)/nh(1−2n)/nF

]n/(n+1)

,

(U
V
)

= F

(
S − p
−p/a

)
. (4.19)

This reduces to Y = [(n+ 1)h1/nhmhmt(3h
2
m − h2)/(6nrB2+1/n)]n/(n+1) and radial flow

when S → 0 (and completes the large-B analysis of Balmforth et al. 2000).
Along the midsection, a→ ±∞, giving

F → h2hmhmt(3h
2
m − h2)

3B(h2
m − h2)(B ∓ Shm)

,

(U
V
)

= ±BF
h

(
1

0

)
. (4.20)

The midsection profiles of h and Y constructed from (4.9) and (4.20) agree tolerably
well with numerical computations like that shown in figure 4. Note that F , and
therefore the yield surface, diverges as h → hm. The beginnings of such a divergence
near dome centre is visible in figure 4. However, in the numerical models, the vent
has a finite size and any singularity is healed over the vent region, keeping the overall
yield surface small.
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The patterns of the depth-averaged velocity fields, h−1(U,V), for the sample
domes of figure 11 are shown in figure 13. As the slope increases, the strongest speeds
become confined to the segment of the dome downslope of the vent, and there is
some similarity to a plug flow bordered by nearly motionless levees. However, the
central velocity profile is never flat and the fluid always spreads laterally.

4.2. The final stationary state of rivulets and slumps

With the characteristics solution we now explicitly construct the final stationary
shapes adopted by rivulets that brake to a halt, and slumps. For stationary rivulets
emerged from an upstream aperture, instead of defining the solution by its apex,
we prescribe the height field, h(0, y) = hu(y0), along the uphill boundary, x = 0 and
y = y0, as described in § 3.2. Now, a is a function of the parameterization of the
boundary, y0:

a =
Shu −

√
B2 − h2

u(h
′
u)

2

huh′u
. (4.21)

This statement of the boundary condition is valid provided B > |huh′u|. The implicit
solution is now

Sx = h− hu − b

2
log

∆(h)

∆(hu)
, (4.22)

S(y − y0) =
√
b2 + a2b2 − h2 −√b2 + a2b2 − h2

u. (4.23)

For a Gaussian aperture, hu(y0) = exp[−(y0/y∗)2], with y∗ = 0.8, the outflow is shown
for varying values of b in figure 14. The limiting shape for b = B/S → 1 is again
an infinite stream with a semicircular profile far downstream. The profile of the
midsection and the maximum downstream length for B/S = 1.1 are compared with
numerical solutions in figures 8 and 9.

The boundary condition in (4.21) fails to provide the starting points for the charac-
teristics when B < |huh′u|. This occurs because the structure can only be stationary
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Figure 15. The characteristics solution for a rivulet emerging from a Gaussian aperture with
B = 1.1 and y∗ = 0.66. The region over which the characteristics cross is shown in more detail
in (b). Panel (c) shows the single-valued surface that we construct by inserting a ‘seam’ into the
solution according to the argument given in the main text.

provided B > h
√
h2
y + (S − hx)2 > |hhy|. Hence, if B < |huh′u|, the fluid is unable to

support itself against flow across the plane (in the y-direction) and the characteristics
become complex. The limiting condition, B = max(|huh′u|), can be written in the form
B = Bc(y∗), which is also drawn in figure 7. For B < Bc(y∗), the cross-slope slump of
the fluid creates narrow boundary layers surrounding the aperture, as are visible in
the numerical solution shown in figure 6.

Profiles like those shown in figure 14 are straightforward to construct provided the
characteristics are simple curves that do not cross. Unfortunately, this does not always
remain the case. For example, for the Gaussian aperture, even if B > Bc(y∗), there
are choices of y∗ for which the characteristics cross near the inlet (see figure 15). In
this situation, the surface that one constructs for h(x, y) is multi-valued and therefore
unphysical (literally, the fluid structure contains voids).

Crossing characteristics are by no means unusual: similar problems invariably arise
in constructing the final stationary states of slumps. In figure 16, we show the multi-
valued surface resulting on attempting to reconstruct one of the slumped structures of
figure 10. In this case, the construction of the characteristics proceeds by fixing the fluid
edge; i.e. we use (4.4)–(4.5) with x0 and y0 given by the computation. To prescribe a,
we note that h = h(x(a, τ), y(a, τ)) implies ∂h/∂a = hx∂x/∂a+hy∂y/∂a. But the edge is
a curve of constant h and τ, and hy = ahx. Hence, a = −(∂y/∂a)/(∂x/∂a) ≡ −dy0/dx0

along this curve.
To remove the ambiguity in the multi-leaved surfaces, we must, in principle, return

to the full height evolution equation. However, given the form of that equation, any
discontinuity in the profile itself would probably force flow over the plane. Hence, we
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Figure 16. The characteristics solution for the slumped dome corresponding to the computation
shown on the right of figure 10, with B = 1/2 and (x∗, y∗) = (1/2, 1/2). The solution is constructed
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picture illustrates only how the characteristics cross. The characteristics are drawn only up to a
certain height less than the maximal value for the sake of clarity (the crossings of the characteristics
otherwise makes the picture unreadable).

argue that the only rule for rendering the solution single-valued which is consistent
with a stationary profile is the one that leaves the surface continuous. This leads us
to trace each characteristic from its starting point (in the aperture, or along the edge)
up to the region in which the curves begin to cross. We then continue only as far
as the point at which a second characteristic crosses the first one, with exactly the
same value of h. At that stage, we switch to the second characteristic and proceed
forward. This produces a single-valued surface with a ‘seam’ cutting through the
old multi-valued region. The seam is a curve of discontinuous surface gradient, as
illustrated in figure 15 for the stationary rivulet. (From a practical perspective, the
construction of the seam is involved; some guidelines are offered in Appendix C.)
We have not proved that the solutions to the thin-film equation actually limit to
these constructions, but they do at least seem plausible. Moreover, the ridges in the
numerical computations of figure 10 closely line up with the positions of the seams
of the reconstructed characteristics solution, indicating that these features could well
be the smoothed relatives of the seams. And once the seam is taken into account,
the midsection profile of the computed slump agrees tolerably with that of the
characteristics solution.

5. Discussion
In this article, we have considered the evolution of thin films of viscoplastic

fluids on inclined planes. We specialized to relatively slow flows, which restricts the
inclination of the slope to low values, and so we have not studied the larger Reynolds
number flows that may be appropriate to some mud flows and submarine gravity
currents. We also considered flow over uniform planes, but it is straightforward to
extend the theory to uneven surfaces and channels (Mei & Yuhi 2001). Our primary
aim was to give a theoretical discussion of the problem explored experimentally
by Coussot & Proust (1996), Coussot et al. (1996) and Osmond & Griffiths (2001),
and lay the foundation for future work. This raises the question of how our results
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compare with the earlier experiments, and we conclude our study with some relevant
remarks.

For domes extruded from a small vent, the most extensive and detailed experiments
are those performed by Osmond & Griffiths. These experiments used very low flow
rates in order to access the regime of relatively strong yield stress. Hence, the analogous
theory is that of large B, as given in § 4. In fact, Osmond & Griffiths complement their
experiments with numerical solutions of the height-field equation (4.1), which is the
basis of that theory, and show fair agreement between the two. The experimental
data do not permit a more detailed comparison of either the velocity field or the
asymptotic temporal scalings of the dome attributes, which our theory also provides.

Coussot & Proust explored the structure of rivulets flowing from an upstream
aperture. They focused on the shape of steady streams, and again provided a comp-
lementary theory based on a simplification of the thin-layer model. Here, we have
been concerned with the transient dynamics of rivulets, notably the cases that brake
to a halt, so we are unable to compare with their experiment.

Finally, Coussot et al. (1996) performed experiments in which they spilled a fixed
volume of fluid onto an inclined plane and measured the shape of the final stationary
deposit. This experiment permits a more detailed comparison with theoretical slumps.
In fact, Coussot et al. already offer a comparison with approximate solutions of
(4.1) which also dictates the shape of the final deposit. However, despite the partial
agreement claimed in that article, there is a more significant disagreement which is
not emphasized associated with the widths of the final structure: given that the fluid
is initially spilled onto a localized area, one is tempted to compare the experiment
with the theory for a slumped dome with a single pinnacle (as in § 4.1). Notably, the
maximum dimensionless width is unity. In all of Coussot’s experiments, however, the
width exceeds unity (as already pointed out by Osmond & Griffiths).

In order to verify the apparent disagreement between the theory and the experiment,
we performed our own ‘spill tests’ with a commercially available kaolin-based slurry
(‘joint compound’ mixed with water). These experiments indicate that, indeed, there
was a discrepancy, but also pointed to the explanation: the appropriate theoretical
model is not an inclined dome with a single pinnacle, but one that possesses a sharp
arc-shaped ridge, as we found in § 3.3. Thus, the theory is not quite correct because the
characteristic curves of the solution cross to produce a multi-valued and unphysical
solution; the removal of the multi-valuedness inserts seams of discontinuous surface
gradient into the solution in place of the pinnacle, as described in § 4.2. Once one
builds this feature into the solution, one can directly compare theory and experiment,
which is the reason why Coussot et al.’s comparison of the thickness profiles was
successful despite the discrepancy in the dimensionless widths.

In figure 17 we show one of our experiments and compare it directly to the theory.
The theoretical structure has a pronounced seam which coincides with various surface
features on the experimental dome, and there is agreement in the overall shape. A
key feature of the seam is that it reduces the predictive power of the theory: if the
dome had a single pinnacle, the slope and the shape of the fluid edge could be used
to independently estimate the yield stress. However, if a seam occurs, the fluid edge
defines only where it must lie, and a further ingredient, such as the maximal height,
is required to compute the yield stress. In our opinion, the most useful attribute
of the slump is the profile of the midsection, which automatically incorporates the
maximal height, and furnishes a convenient set of measurements to compare theory
and experiment. Such a comparison is shown in figure 17(b), and confirms the utility
of the theory.
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Figure 17. Comparison between the theory and an experiment in which we spilled a fixed volume
(about 1 l) of a kaolin-based slurry onto an inclined plane. The slurry was formed by diluting ‘joint
compound’ (Sheetrock Brand, United States Gypsum Company) with water (in the ratio of 7.5 kg
of compound to 11 kg of water). (a) Theoretical contours of constant thickness superposed onto a
photograph from the experiment. The dotted contour levels are spaced by 0.01, whilst the dashed
contours near the maximal height are spaced by 4× 10−5. The dashed-dotted line shows the
characteristic along which the seam first occurs, and the solid curve delimited by dots is the seam.
The dot midway along the seam is the position of maximum height. (b) The theoretical and
experimental midsection profiles. The characteristics solution is constructed from the observed fluid
edge (fit with the function y2 = f(x), where f(x) is a quartic polynomial); the full solution, with its
seam, is shown in (c). The lengths and thickness are shown in dimensionless units obtained using
the total slopewise length of the deposit, and S = 1 (which fixes H = L tanφ and not to be the
maximum thickness). The slope angle is φ ≈ 9.5◦, and the slurry is spilled into the localized region
indicated by the circle in (a). The yield stress, τp ≈ 22 Pa s, was estimated by spilling the slurry onto
a horizontal plane (cf. Osmond & Griffiths), and using the formula, τp = ρg(height)2/(diameter)
(ρ ≈ 1440 kg m−3). From τp, L and φ, we estimate that B = τp/(ρgL

2 sinφ) ≈ 0.1. Two sets of
independent measurements of thickness are shown in (b), and the spread of points gives some idea
of the measurement error. The vertical error bars and the shaded theoretical band indicate the
uncertainties stemming from the non-dimensionalization of h (that is, H) and contained in B.
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We close by mentioning that our theory for yield-stress-dominated domes is closely
connected to the classical theory of plasticity (Hill 1950). The main difference is
that the ‘plastic’ region is a slab of fluid deforming under the action of stresses
that are very slightly above the yield stress, and thin yielded boundary layers arise
beside any walls. By contrast, standard plasticity theory often assumes a boundary
condition based upon Prandtl’s friction law (wall shear stress is proportional to the
yield stress) to allow the plastic material to slip over the bounding walls; the constant
of proportionality, the friction factor, becomes a parameter in the problem (Sherwood
& Durban 1998).

The financial support of an EPSRC Advanced Fellowship is gratefully acknowl-
edged by R. V. C. This work was supported by the National Science Foundation
(Grant No. DMS 72521).

Appendix A. Spreading uniform rivulets
In this and the following Appendix we retreat to two simpler problems: a uniform

rivulet directed downhill (so ∂x = 0), and a line source on a plane (with ∂y = 0).
An expanding horizontal dome can also be dealt with in a straightforward fashion
(Balmforth et al. 2000). We deal with the rivulet first.

The thin-layer theory is encapsulated in the equations,

ht = ∂y

[
n sgn(hy)

n+ 1
|hy|1/nY 1+1/n

(
h− nY

2n+ 1

)]
, Y = Max

h− B√
S2 + h2

y

, 0

 .

(A 1)

There is no mass source, and the fluid flows from an initial profile given by h(y, t = 0)
= exp[−(y/y∗)2]. Provided Y > 0, the rivulet flows downslope, and decelerates as a
whole once it spreads.

Two sample spreading rivulets with different yield stresses are shown in figure 18.
For the larger value of B, the fluid slumps sideways to an equilibrium characterized
largely by Y = 0. That state is given by

h =

√
b2 − (Sy +

√
b2 − h2

m)2, (A 2)

where hm = h(0, t� 1) is the final maximal height (b = B/S). In this formula, b must
exceed hm, which sets an upper bound on the cross-sectional area of a stationary
rivulet. Provided the bound is larger than the cross-sectional area of the initial rivulet
(as given by the initial width y∗), the fluid can relax to a stationary rivulet with hm < b.
If, however, the initial width is any larger, there is more fluid than can be locked into
a stationary rivulet and the fluid will spread continually. The computation with lower
b in figure 18 illustrates this second situation.

Appendix B. Line sources
For line sources (sheet flow),

ht + ∂x

[
nσ

n+ 1
|S − hx|1/nY 1+1/n

(
h− nY

2n+ 1

)]
= ws, Y = Max

(
h− B

|S − hx| , 0
)
(B 1)
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Figure 18. The thickness (solid lines) and yield surfaces (dotted lines) for spreading uniform rivulets
with (a) B = 1/4 and (b) B = 3/4. The initial profile has a characteristic half-width of y∗ = 0.25.
The dots show the maximum stationary profile at that yield stress; the circles in (b) show the
approximate final shape. The solutions are shown at intervals of 1.25 in t.

and

d

dt

∫ Xmin

Xmax

h(x, t) dx = Q, (B 2)

where σ = sgn(S − hx), and Xmax and Xmin denote the edges of the flow.
Sample evolving flows are shown in figures 19 and 20. The source function used is a

one-dimensional analogue of (3.1): ws = 50[Max(1− 2500x2, 0)]2 (giving Q = 16/15).
Because of their relative simplicity, these one-dimensional examples can be used to
verify in detail the similarity scalings and B � 1 asymptotic theory.

B.1. Similarity scalings

We look for similarity solutions by considering infinitely thin sources and setting
x = ξtγ and h(x, t) = ϕ(ξ)t1−γ . The evolution equation then becomes

ϕ− γ(ξϕ)ξ + t(2+1/n)(1−γ)
[
nσ

n+ 1
|S − t1−2γϕξ |1/nY1+1/n

(
ϕ− nY

2n+ 1

)]
ξ

= 0, (B 3)

where

Y = ϕ− Btγ−1

S − t1−2γϕξ
, Q =

∫ ∞
−∞
ϕ dξ (B 4)

and σ = sgn(S − t1−2γφξ).
The small-time similarity solution is given by γ = 2(n+ 1)/(2n+ 3) and is identical

to that for an extrusion of a power-law fluid onto a flat plane. For n = 1, the maximal
thickness and fluid edges scale as

hm ∼ t1/5, Xmax = −Xmin ∼ t4/5. (B 5)

All other terms in (B 3) and (B 4) are sub-dominant for t−1 →∞, but not as time
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Figure 19. The thickness and yield surfaces for constant extrusion from a line source with
(a) B = 0.1, (b) B = 1 and (c) B = 10 (and n = 1). The solutions are shown at unit intervals in t.
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Figure 20. Evolution of (a) upstream length, (b) downstream length and (c) maximum height
for extrusions with varying B. For these computations, in order to better resolve the solution,
the domain of the computation was split into upstream and downstream sections that moved
approximately with the fluid edges, and the source function was replaced by a boundary condition
at x = 0.

proceeds forward. For the latter, the approximation breaks down in two possible
ways: one is due to the slope-dependent terms in the combination, S− t1−2γ; the other
is due to the yield-stress term in Y. The slope-dependent terms become important
for t = O(1). The yield stress, on the other hand, can break the early-time scalings
when t ∼ B1/(2−3γ). Thus we anticipate two transitions from the early-time scalings
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Figure 21. Comparison of the numerical and asymptotic solution for n = 1 and B = 25: (a) maximal
height, (b) edge locations, (c) thickness and yield stress. In (c) the comparison is made at t = 10.

that depend on the yield stress. For B � 1, the extrusion enters a slope-dominated
regime given by γ = 1,

ξϕξ =

[
nσS

n+ 1
Y1+1/n

(
ϕ− nY

2n+ 1

)]
ξ

(B 6)

and Y = ϕ− B/S . The relevant solution is ϕ = constant, which describes a uniform
slab moving downslope (and must be corrected in a boundary layer at the fluid edge;
cf. Lister 1992). As for a point source, the uphill part of the solution is not given by
this relation, but instead comes to rest. The long-time scalings are now

hm,Xmin ∼ t0, Xmax ∼ t. (B 7)

The second transition, occurring for B � 1, is to a yield-stress-dominated state.

B.2. Yield-stress-dominated situations

When B is large, Y → 0. This limit can be explored using a formal expansion (h = BH,
x = Bx̃, t = B2t̃ and Y = B−n/(n+1)Ỹ ), but because we need only the leading-order
terms, we show the analysis in terms of the original variables. For an infinitely thin
line source, the equations become:

(S − hx)h = ±B, ht = −∂x
(
nσh

n+ 1
|S − hx|1/nY 1+1/n

)
(B 8)

and

d

dt

∫ Xmax

Xmin

h(x, t) dx = Q. (B 9)

We immediately find the solution for the thickness:

h− hm ± b log
(b∓ h)
(b∓ hm)

= Sx, (B 10)
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where h = hm and x = 0 and b = B/S . The edges of the fluid are given by the further
relations,

SXmax = −hm − b log(1− hm/b), SXmin = −hm + b log(1 + hm/b). (B 11)

We substitute the solution into the conservation law to find

SQt = b2 log

(
b+ hm

b− hm
)
− 2bhm, (B 12)

which is in agreement with numerical computations (see figure 21).
Next consider the height evolution equation:

ht ± nB1/n

n+ 1
(h1−1/nY 1+1/n)x = 0, (B 13)

giving

Y =

[
(n+ 1)h1/nhmhmt

nSB1/n(b∓ hm)

]n/(n+1)

. (B 14)

The two versions of this relation provide the fake yield surfaces upstream and down-
stream of the fluid apex (shown in figure 21c).

Finally, we may read off the temporal scalings:

t� 1: hm ∼ t1/3, Xmax = −Xmin ∼ t2/3, (B 15)

and

t� 1: hm,Xmin ∼ t0, Xmax ∼ t. (B 16)

All the various scalings are verified by the computations shown in figure 20.

Appendix C. Construction of the seam
In §§ 4 and 5, we build solutions to the characteristic equations for stationary

deposits that contain seams of discontinuous surface gradient and render the solution
single-valued. In this Appendix, we offer some guidelines for how one performs such
constructions.

We begin with the stationary rivulet, for which the characteristics cross near the
aperture, see figure 15. First, we locate the values of h for which crossings can
potentially occur. The range begins at h = 0, since the seam extends to the fluid edge.
To find the upper limit of the range, hc, we note that, at fixed height, x should be a
monotonic function of y0, unless there are characteristics crossing. Hence, hc is the
largest value of height for which dx/dy0 = 0.

Next, we explicitly locate the seam: here, there are two characteristics with different
values for y0, say y0α and y0β , that must have the same position, (x, y), and height, h.
In other words,

x(y0α, h) = x(y0β, h), y(y0α, h) = y(y0β, h), (C 1)

where x(y0, h) and y(y0, h) are the two functions in (4.23). These equations can be
solved for the labels of the characteristics, y0α and y0β , given h. In particular, by
putting h = 0 in (C 1), we determine the range of characteristics, [ycα, ycβ], for which
there are crossings.

Now we have all the information needed to locate the region over which the
characteristics cross on both the (y0, h)-plane and in real space (x, y). To produce the
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surface, h(x, y), we need only keep track of this special region, and monitor, using
(C 1), when we must switch characteristics.

For the stationary slumps, the prescription is not very different. Now, the range
of awkward height values is [hc, hm], where hm is the maximum dimensionless height.
The discriminant that we may use to detect crossings is dx/da, on using a to label
the characteristics (assuming this to be unambiguous). We then compute hc and the
location of the seam as above, but using (4.4)–(4.5) for x(a, h) and y(a, h). In this case,
every characteristic crosses at least one other, because these curves all begin along
the edge and then rise to increasing heights, ending only when they intersect a seam.
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